Code Composer Studio™ v5.4 User's Guide for
MSP430™

User's Guide

I3 TExXAS

INSTRUMENTS

Literature Number: SLAU157Y
May 2005—Revised May 2013

I3 TEXAS
INSTRUMENTS

Contents

=] =T 5
1 LTS3 =T =0 B N[0 1 PP 7
11 SOftWAre INSEAIIALION 1. uee ittt s e e s e s s et 8

1.2 e F= 1] T o T L= I 5 P 8

1.3 Important MSP430™ Documents on the CD-ROM and Webuviiiiiiiiiiiiiiiiiiiirsii e nnanes 9

2 (DAY Z=T ol o] 01T a1 Al = o 1Y OO PPUPRE 10
2.1 Using Code CompPOoSEr STUIO (CCTS) uuuiuuteiutirntirneiaterasseristsriasssass s saatssassesansisinssanssianness 11

2.1.1 Creating a Project FrOm SCratChii.ueesiiiiiiiiiii i s i s s r e s s sraan s s saann e e anaanns 11

2 A = o] 1= Tox BT =1 11 o = P 12

2.1.3 Using an Existing CCE v2, CCE v3, CCE v3.1, and CCS V4.X ProjECtcuvviiiiiiieriiiiinnenrnnnnens 12

A R S - Yo Qi 1V =T g = Vo =0 1T o | 12

2.1.5 How to Generate Binary-Format Files (TI-TXT and INTEL-HEX)cccvvviiiiiieriiiiineerniinnneesnnnnnes 13

2.1.6 Overview of Example Programs and ProjECISuviueivieiiiseiiiiriiisirissisinasssinneranssanes 13

2.2 Using the Integrated DeDUGGETciiuueteiiiiee i rr e ss s s e s sa s e s sranae s saannessaannnness 13

p 2 R = == 14 o] 1Y/ oY= 13

pZ 2 U 1= g To === T o1 15

A Frequently ASKed QUESTIONS ...uiiiiiiiii ittt et et e e e e e e e e e e s e e s e e e e eaens 17
Al = 0 17 = 18

A.2 Program Development (Assembler, C-Compiler, Linker, IDE) ...ivviiiiiiiiiiiii i saaeenas 18

A3 3 7= o1 T o 1o 19

B Migration of C Code from IAR 2.X, 3.X, 4.X 10 CCS .iiiniiiii it e e e e e eeas 22
B.1 L1 0= U] o] A =T o o) gl 0T =1 Ty oo P 23

B.2 LT ET Tl T o) 23

B.3 Data and FUNCHON PIaCEMENT ...ttt e et e s s s e st s s e e s ss e s s saann e e saannaeeinn 23

B.3.1 Data Placement at an AbSOIUtE LOCALION ..uvuviseiiiisiiiise s raaeraens 23

B.3.2 Data Placement INto Named SEgMENTS . ..uuiueiriutireeiiteiai s airsrasssnarsraaeraanerns 24

B.3.3 Function Placement INto Named SEegMENTSovueeieiiiiieiniiiiieeiraieessaiaeesssannneessannneeens 24

B.4 (O @2 1111 o T @] 0 17/=1 1 o] 1= 25

B.5 (O 11 =T 15 1=T =T o o7 = 25

B.5.1 Initializing Static and Global Variablesceviiiiiiiiii e 25

B.5.2 CuStOM BOOt ROULINE +.uuiustiseisiitisirsentias s s s e s s s n s e e anens 26

B.5.3 Predefined Memory Segment NAMESuueiiieiiiieiiiii s s s ssar s sanneras 26

B.5.4 Predefined MacCro NAIMESeiiiiiiteiiiiitse et sraase s taaas s s saaane s saaantessaaannasssannnnesss 27

C Migration of Assembler Code from IAR 2.X, 3.X, 4.X 10 CCS ..iiiiiiiiiiiiiiiiiiiiiir e 28
C.1 Sharing C/C++ Header Files With ASSEMDBlY SOUIMCE ...uviiiiiiiiiiiiii i e e aes 29

O ST T0 1.0 1] 1o 1o 29

C.3 Translating A430 Assembler Directives to ASMA430 Dir€ClIVES ...uuureiiiiiuisriiiiieiiiiieaiiinreasianneeaas 30

L@ 70 A 10110 Yo 11T 1o o 30

O T O =T = T) =T S] T 30

C.3.3 SecCtion CONtrol DIFECHVES w.uuuuuuteiiiinteeisaseeisaiaee s ssaasressaassesssaassesssaannnssasannnss 31

C.3.4 Constant INitialization DIrECHVES .uutiuseiiueeiisteiiserseisierrse st tarrsrasesanrsransaas 31

C.3.5 LiSting CONLrOl DIFECHVES uutiuuseiuseiiseinstisssiase st ssse st s s s s aaanssansesanness 32

C.3.6 File ReferenCe DiIrECHVES .uuiiiiuteeiiiinteeiisiee st ssaias e s saaste s ssastessaaaasnssasannnssasannnees 32

C.3.7 Conditional ASSEMDIY DIFrECHVES 1.uvuiuueiietireeiite it ras it rar s sainesassrannens 33

2 Contents SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

I3 TEXAS
INSTRUMENTS
www.ti.com
C.3.8 SymbOl CONtrol DIFECHVES .uiuutiiuterseinetirae st ssa s sre e e s s saan s saassaanesanssannssannens 33
(O JXe T V.- Tox o I T (= ox 1) 34
C.3.10 MiSCEllanEOUS DiIrECHIVES wuuiuuuusesinianeeiaaineessaiaanssssaasssessaaassesssasssesssaannnsssaannnsssssnnnes 34
C.3.11 Alphabetical Listing and Cross Reference of ASm430 Dir€CtiVESvvviiierrriiiinerrrniineerrannneens 35
C.3.12 Unsupported A430 DireCtives (JAR)eiiiieiiiiiie i aaaane e s saanne s saaanne s saaannnesaaanness 36
D L ST o L=Tod | ol 1V = T PP 37
D.1 =T 3T 38
D.1.1 Debug VIiew: RUN — FrE@ RUN ...uiiiuiiiiieiiinisisse st sassssissssas s s s ssaassansssannesans 38
D.1.2 RUN — CONNECE TAIGET uuuuuuuasannssnsneeeessssssssssaassissssssssstssreeesesststmmmssssssssssnssnnnnnns 38
D.1.3 Run — Advanced — Make DEVICE SECUME ...iviiuriiserutiinerseriniastreriserrrasraerineaerarraseraes 38
D.1.4 Project — Properties — Debug — MSP430 Properties — Clock Controlccevviieviiinniineinnns 38
D.1.5 Window — Show View — BreakpOiNtSeeeiiiiieteeiiiiitessiinsesiaassesisaianssisainnssssaannnessns 38
D.1.6 Window — Show View — Other... Debug — Trace CONtrolccevvviiiiieriiiineersiiinreeasinnneennns 38
D.1.7 Project — Properties — Debug — MSP430 Properties — Target Voltagecoeeviiiiiiiiiinninnns 38
E DEVICE SPECITIC MBINMUS .uiuieie ittt ettt e e e e e e e e e s e e e e e e e ns 39
E.1 Y 27 10 0 39
I R =1 410 F= [1 o Yo [39
2 1o = T =Y oo [41
E.1.3 C092 PasSWOId ProteCIONueeeissusesssssnnesisistssssansssessaasssstssssssssainnssssasnnnesssannnnesss 41
E.2 MSP430F5xx and MSPA30F6XX BSL SUPPOIT .uuueiueiiisteisternsisssissssanssassssiasssnssiannssannssannsras 42
E.3 MSP430F5xx and MSPA430F6XX PassWord ProteCtioNeeeiiieissiiiiieeiriiieneisaiinnsesaannnressannneeens 43
E.4 LPMX.5 CCS DEDUG SUPPOI . uuteiiisteeissistesssstssssaasssessaasssesssassssssassssssaannnssssannnnsssannsnesss 44
E.4.1 Debugging With LPIMX.5 . .uuiueiiiiiiiiii i r s s s r e s s s s s s s nan s e e sanneras 44
E.4.2 LPMX.5 Debug LIMItAtiONSueeiiiieiiiiiit e ersietee s aate s ssaanne s s saaann e s ssannsssaannneessannnnensnn 45
AV A=Y o] o I] o] oY/ PP 46
SLAU157Y—-May 2005—-Revised May 2013 Contents 3

Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
e I |V S = 0L 22 1Y (o Yo [40
E-2. MSP430L092 in CO92 EMUIAtION IMOOE . ..tiiiiiiiesseseettnnsaessssetnnnnnnsassssesnsnnnsssssssssssnnnnssssssrees 41
E-3. MSPA430C092 PaSSWOIT ACCESS tttuuuunnrreerennnnnnnsrreeeemnnnnsnrmrreemesnnsmmrreememmnnserrrrreesssssrrrrees 42
e N {1 11V A o o LT3 (0 T = 1 43
E-5 MSPA30 PASSWOIT ACCESS ttttuuuuerrreertnnnnseesssseennnnnsssesssseessnnsseresssesnnsnsssesssseessnsssssssssssennnns 44
E-6. Enabling LPMX.5 DEDUG SUPPOI +uuutiiuettiaeiteiassesstssas e sssssassssinssssssssssansssansesnsstannssns 45
List of Tables
O S VA1 =T T =T 01T =) 0= o1 £ 8
I O o To [0 =T 4]][9
2-1. Device Architecture, Breakpoints, and Other Emulation FEatUresSovieiiiiiiiiiiiiiii i rrnneeees 14
4 List of Figures SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

/ Preface
I TEXAS SLAU157Y—-May 2005—Revised May 2013

INSTRUMENTS
Read This First

About This Manual

This manual describes the use of Texas Instruments™ Code Composer Studio™ IDE v5.4 (CCS v5.4)
with the MSP430™ ultralow-power microcontrollers. This manual describes only the Windows version of
the Code Composer Studio IDE. The setup for Linux is similar and is therefore not described separately.

How to Use This Manual

Read and follow the instructions in the Get Started Now! chapter. This chapter provides instructions on
installing the software and describes how to run the demonstration programs. After you see how quick and
easy it is to use the development tools, TI recommends that you read all of this manual.

This manual describes only the setup and basic operation of the software development environment but
does not fully describe the MSP430 microcontrollers or the complete development software and hardware
systems. For details on these items, see the appropriate Tl documents listed in Section 1.3, Important
MSP430 Documents on the CD-ROM and Web, and in Related Documentation From Texas Instruments.

This manual applies to the use of CCS with the Texas Instruments MSP-FET430UIF, eZ-FET, and €Z430
development tools series.

These tools contain the most up-to-date materials available at the time of packaging. For the latest
materials (including data sheets, user's guides, software, and application information), visit the TI MSP430
web site at www.ti.com/msp430 or contact your local Tl sales office.

Information About Cautions and Warnings

This document may contain cautions and warnings.

CAUTION
This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your
software or equipment.

WARNING

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection. Read each caution and warning
carefully.

Texas Instruments, Code Composer Studio, MSP430 are trademarks of Texas Instruments.

IAR Embedded Workbench is a registered trademark of IAR Systems AB.

ThinkPad is a registered trademark of Lenovo.

Microsoft, Windows, Windows Vista, Windows 7 are registered trademarks of Microsoft Corporation.
All other trademarks are the property of their respective owners.

SLAU157Y—-May 2005—-Revised May 2013 Read This First 5

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Related Documentation From Texas Instruments www.ti.com

Related Documentation From Texas Instruments
CCS v5.4 documentation
MSP430™ Assembly Language Tools User's Guide, literature number SLAU131
MSP430™ Optimizing C/C++ Compiler User's Guide, literature number SLAU132
MSP430™ development tools documentation
MSP430™ Hardware Tools User's Guide, literature number SLAU278
€Z430-F2013 Development Tool User's Guide, literature number SLAU176
eZ430-RF2480 User's Guide, literature number SWRA176
eZ430-RF2500 Development Tool User's Guide, literature number SLAU227
€Z430-RF2500-SEH Development Tool User's Guide, literature number SLAU273
eZ430-Chronos™ Development Tool User's Guide, literature number SLAU292
MSP-EXP430G2 LaunchPad Experimenter Board User's Guide, literature number SLAU318
MSP430 device data sheets
MSP430x1xx Family User's Guide, literature number SLAU049
MSP430x2xx Family User's Guide, literature number SLAU144
MSP430x3xx Family User's Guide, literature number SLAU012
MSP430x4xx Family User's Guide, literature number SLAU056
MSP430x5xx and MSP430x6xx Family User's Guide, literature number SLAU208
CC430 device data sheets
CC430 Family User's Guide, literature number SLAU259

If You Need Assistance

Support for the MSP430 microcontrollers and the FET development tools is provided by the Texas
Instruments Product Information Center (PIC). Contact information for the PIC can be found on the Tl web
site at www.ti.com/support. A Code Composer Studio specific Wiki page (FAQ) is available, and the Texas
Instruments E2E Community support forums for the MSP430 and Code Composer Studio v5.4 provide
open interaction with peer engineers, Tl engineers, and other experts. Additional device-specific
information can be found on the MSP430 web site.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio-frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case, the user is required to take whatever
measures may be required to correct this interference at his own expense.

6 Read This First SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU131
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/pdf/SLAU278
http://www.ti.com/lit/pdf/SLAU176
http://www.ti.com/lit/pdf/SWRA176
http://www.ti.com/lit/pdf/SLAU227
http://www.ti.com/lit/pdf/SLAU273
http://www.ti.com/lit/pdf/SLAU292
http://www.ti.com/lit/pdf/SLAU318
http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU012
http://www.ti.com/lit/pdf/SLAU056
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU259
http://www.ti.com/support
http://www.tiexpressdsp.com/index.php/Category:Code_Composer_Studio_v4
https://community.ti.com
http://community.ti.com/forums/12.aspx
http://community.ti.com/forums/138.aspx
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

. Chapter 1
I ’.{‘IE)S(’;A"EUMENTS SLAU157Y—-May 2005—Revised May 2013

Get Started Now!

This chapter provides instructions on installing the software, and shows how to run the demonstration

programs.
Topic Page
1.1 Software INStallationiui.eeie it e et a e a s e e e a e e e e naaa 8
1.2 FIaShiNg the LED ..uiuieitiiiiitiie ettt e e e et a e a e e e e e ta e e et ea s e e e e anane e eananas 8
1.3 Important MSP430™ Documents on the CD-ROM and Webcccocviviiiiiiiiiiiienninnnnnns 9
SLAU157Y-May 2005—Revised May 2013 Get Started Now! 7

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Software Installation www.ti.com

1.1

1.2

Software Installation

To install Code Composer Studio™ IDE v5.4 (CCS), run setup_CCS_x.x.x.x.exe from the DVD. If the CCS
package was downloaded, please ensure to extract the full zip archive before running
setup_CCS_x.x.x.x.exe. Follow the instructions shown on the screen. The hardware drivers for the USB
JTAG emulators (MSP-FET430UIF, eZ-FET and eZ430 series) are installed automatically when installing
CCS. The parallel-port FET (MSP-FET430PIF) legacy debug interface is no longer supported in this
version of CCS.

NOTE: The legacy MSP-FET430PIF (parallel-port emulator) is not supported by this version of CCS.

NOTE: Fully extract the zip archive (setup_CCS_x_x_x.zip) before running setup_CCS_x.x.x.x.exe.

Table 1-1. System Requirements

Recommended System Requirements Minimum System Requirements

Processor Dual Core 1.5 GHz
RAM 2GB 1GB

300 MB (depends on features selected during
installation)

Microsoft® Windows® XP with SP2 (32 or 64 bit) or | Microsoft® Windows® XP with SP2 (32 or 64 bit) or
Operating System Windows Vista® with SP1 (32 or 64 bit) or Windows Vista® (32 or 64 bit) or
Windows 7® (32 or 64 bit) Windows 7® (32 or 64 bit)

Free Disk Space 2GB

Flashing the LED

This section demonstrates on the FET the equivalent of the C-language "Hello world!" introductory
program. CCS v5.4 includes C and ASM code files as well as fully pre-configured projects. The following
describes how an application that flashes the LED is developed, downloaded to the FET, and run.

1. Start Code Composer Studio Start — All Programs — Texas Instruments — Code Composer Studio —
Code Composer Studio.

2. Create a new Project by selecting File — New — CCS Project.
Enter a project name and select Device Variant

4. If using a USB Flash Emulation Tool such as the MSP-FET430UIF or the eZ430 Development Tool,
they should be already configured by default.

5. Select "Blink The LED" basic Example in the Project templates and examples section.
6. Click Finish.

w

NOTE: The predefined example works with most MSP430 boards. Certain MSP430x4xx boards use
Port P5.0 for the LED connection. In addition the MSP430L092 board requires a different
code example. Code for these examples are available. See Table 1-2 for details.

8

Get Started Now! SLAU157Y-May 2005—Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com Important MSP430™ Documents on the CD-ROM and Web

Table 1-2. Code Examples

MSP430 Devices Code Example
MSP430x1xx device family
MSP430x2xx device family
MSP430x4xx device family
MSP430x5xx device family
MSP430x6xx device family
MSP430L092

.>\msp430x1xx\C-Source\msp430x1xx.c

.>\msp430x2xx\C-Source\msp430x2xx.c

..>\msp430x4xx\C-Source\msp430x4xx.c

..>\msp430x5xx\C-Source\msp430x5xx.c

..>\msp430x6xx\C-Source\msp430x6xx.c
..>\msp430x5xx\C-Source\msp4301092.c

N|N|IN|N|N|A

7. To compile the code and download the application to the target device, go to Run — Debug (F11).

8. The application may be started by selecting Run — Resume (F8) or clicking the Play button on the
toolbar.

See FAQ Debugging #1 if the CCS debugger is unable to communicate with the device.
Congratulations, you have just built and tested an MSP430 application!

Predefined projects, which are located in <Installation Root>\ccsv5\ccs_base\msp430\examples\example
projects, can be imported by selecting Project — Import Existing CCS/CCE Eclipse Project.

1.3 Important MSP430™ Documents on the CD-ROM and Web

The primary sources of MSP430 and CCS v5.4 information are the device-specific data sheets and user's
guides. The most up-to-date versions of these documents available at the time of production have been
provided on the CD-ROM included with this tool. The MSP430 web site (www.ti.com/msp430) contains the
latest version of these documents.

SLAU157Y—-May 2005—-Revised May 2013 Get Started Now! 9

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

. Chapter 2
I ’.{‘IE)S(’;A"EUMENTS SLAU157Y—-May 2005—Revised May 2013

Development Flow

This chapter discusses how to use Code Composer Studio (CCS) to develop application software and
how to debug that software.

Topic Page
2.1 Using Code Composer StUAIO (CCS) uiuiuiiiiiiuiuiiiitiniieieeniueeaeasinseneanassneneneaeananens 11
2.2 Using the Integrated DebDUQGQEr ...iuiuiiitieiie ettt ettt eea e a et e e e enaneneaeanes 13
10 Development Flow SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com Using Code Composer Studio (CCS)

2.1 Using Code Composer Studio (CCS)

The following sections are a brief overview of how to use CCS. For a full discussion of software
development flow with CCS in assembly or C, see MSP430 Assembly Language Tools User's Guide
(SLAU131) and MSP430 Optimizing C/C++ Compiler User's Guide (SLAU132).

2.1.1 Creating a Project From Scratch

This section presents step-by-step instructions to create an assembly or C project from scratch and to
download and run the application on the MSP430 (see Section 2.1.2, Project Settings). Also, the MSP430
Code Composer Studio Help presents a more comprehensive overview of the process.

1. Start the CCS (Start — All Programs — Texas Instruments — Code Composer Studio — Code
Composer Studio).

2. Create new project (File — New — CCS Project). Enter the name for the project, click next and set
Device Family to MSP430.

3. Select the appropriate device variant. For assembly only projects please select "Empty Assembly-only
Project" in the "Project template and examples" section.

4. If using a USB Flash Emulation Tool such as the MSP-FET430UIF, eZ-FET or the eZ430 Development
Tool, they should be already configured by default..

5. For C projects the setup is complete now, main.c is shown, and code can be entered. In case of an
assembly project, a new source file must be created (File — New — Source File). Enter the file name
and remember to add the .asm suffix. If, instead, you want to use an existing source file for your
project, click Project — Add Files... and browse to the file of interest. Single click on the file and click
Open or double-click on the file name to complete the addition of it into the project folder.

6. Click Finish.

7. Enter the program text into the file.

NOTE: Use .h files to simplify code development.

CCS is supplied with files for each device that define the device registers and the bit names.
Using these files is recommended and can greatly simplify the task of developing a program.
To include the .h file corresponding to the target device, add the line #include
<msp430xyyy.h> for C and .cdecls C,LIST,"msp430xyyy" for assembly code, where xyyy
specifies the MSP430 part number.

8. Build the project (Project — Build Project).

9. Debug the application (Run — Debug (F11)). This starts the debugger, which gains control of the
target, erases the target memory, programs the target memory with the application, and resets the
target.

See FAQ Debugging #1 if the debugger is unable to communicate with the device.

10. Click Run — Resume (F8) to start the application.

11. Click Run — Terminate to stop the application and to exit the debugger. CCS returns to the C/C++
view (code editor) automatically.

12. Click File — Exit to exit CCS.

SLAU157Y-May 2005—Revised May 2013 Development Flow 11

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU131
http://www.ti.com/lit/pdf/SLAU132
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Using Code Composer Studio (CCS) www.ti.com

21.2

2.1.3

214

Project Settings

The settings required to configure the CCS are numerous and detailed. Most projects can be compiled
and debugged with default factory settings. The project settings are accessed by clicking Project —
Properties for the active project. The following project settings are recommended or required:

» Specify the target device for debug session (Project — Properties — General — Device — Variant).
The corresponding Linker Command File and Runtime Support Library are selected automatically.

» To more easily debug a C project, disable optimization (Project — Properties — Build — MSP430
Compiler — Optimization — Optimization level).

» Specify the search path for the C preprocessor (Project — Properties — Build — MSP430 Compiler —
Include Options).

» Specify the search path for any libraries being used (Project — Properties — Build — MSP430
Compiler — File Search Path).

» Specify the debugger interface (Project — Properties — General — Device — Connection). Select Tl
MSP430 LPTx for the parallel FET interface or TI MSP430 USBXx for the USB interface.

» Enable the erasure of the Main and Information memaories before object code download (Project —
Properties — Debug — MSP430 Properties — Download Options — Erase Main and Information
Memory).

» To ensure proper standalone operation, disable Software Breakpoints (Project — Properties — Debug
— MSP430 Properties — Enable Software Breakpoints). If Software Breakpoints are enabled, ensure
proper termination of each debug session while the target is connected; otherwise, the target may not
be operational standalone as the application on the device still contains the software breakpoint
instructions.

Using an Existing CCE v2, CCE v3, CCE v3.1, and CCS v4.x Project

CCS v5.4 supports the conversion of workspaces and projects created in version CCE v2, v3, v3.1 and
CCSv4.x to the CCS v5.4 format (File — Import — General — Existing Projects into Workspace — Next).
Browse to legacy CCE workspace containing the project to be imported. The Import Wizard lists all
projects in the given workspace. Specific Projects can then be selected and converted. CCEv2 and
CCEv3 projects may require manual work on the target configuration file (*.ccxml) after import.

The IDE may return a warning that an imported project was built with another version of Code Generation
Tools (CGT) depending on the previous CGT version.

While the support for assembly projects has not changed, the header files for C code have been modified
slightly to improve compatibility with the IAR Embedded Workbench® IDE (interrupt vector definitions). The
definitions used in CCE 2.x are still given, but have been commented out in all header files. To support
CCE 2.x C code, remove the "/[" in front of #define statements, which are located at the end of each .h
file, in the section "Interrupt Vectors".

Stack Management

The reserved stack size can be configured through the project options dialog (Project — Properties —
Build — MSP430 Linker — Basic Options — Set C System Stack Size). Stack size is defined to extend
from the last location of RAM for 50 to 80 bytes (that is, the stack extends downwards through RAM for 50
to 80 bytes, depending on the RAM size of the selected device).

Note that the stack can overflow due to small size or application errors. See Section 2.2.2.1 for a method
of tracking the stack size.

12

Development Flow SLAU157Y-May 2005—Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

I

TEXAS
INSTRUMENTS

www.ti.com Using the Integrated Debugger

215

How to Generate Binary-Format Files (TI-TXT and INTEL-HEX)

The CCS installation includes the hex430.exe conversion tool. It can be configured to generate output
objects in TI-TXT format for use with the MSP-GANG430 and MSP-PRGS430 programmers, as well as
INTEL-HEX format files for Tl factory device programming. The tool can be used either standalone in a
command line (located in <Installation Root>\ccsv5\ccs_base\tools\compiler\msp430\bin) or directly within
CCS. In the latter case, a post-build step can be configured to generate the file automatically after every
build by selecting predefined formats such as TI-TXT and INTEL-HEX in the "Apply Predefined Step" pull-
down menu (Project — Properties — Build — Build Steps Tab — Post-Build Step — Apply Predefined
Step). The generated file is stored in the <Workspace>\<Project>\Debug\ directory.

2.1.6 Overview of Example Programs and Projects
Example programs for MSP430 devices are provided in
<Installation Root>\ccsv5\ccs_base\msp430\examples. Assembly and C sources are available in the
appropriate subdirectory.
To use the examples, create a new project and add the example source file to the project by clicking
Project — Add Files... In addition, example projects corresponding to the code examples are provided in
<Installation Root>\ccsv5b\ccs_base\msp430\examples\example projects. The projects can be imported by
Project — Import Existing CCS/CCE Eclipse Project (see Section 1.2 for more information).
2.2 Using the Integrated Debugger
See Appendix D for a description of FET-specific menus within CCS.
2.2.1 Breakpoint Types
The debugger breakpoint mechanism uses a limited number of on-chip debugging resources (specifically,
N breakpoint registers, see Table 2-1). When N or fewer breakpoints are set, the application runs at full
device speed (or "realtime"). When greater than N breakpoints are set and Use Software Breakpoints is
enabled (Project — Properties — Debug — MSP430 Properties — Enable Software Breakpoints), an
unlimited number of software breakpoints can be set while still meeting realtime constraints.
NOTE: A software breakpoint replaces the instruction at the breakpoint address with a call to
interrupt the code execution. Therefore, there is a small delay when setting a software
breakpoint. In addition, the use of software breakpoints always requires proper termination of
each debug session; otherwise, the application may not be operational standalone, because
the application on the device would still contain the software breakpoint instructions.
Both address (code) and data (value) breakpoints are supported. Data breakpoints and range breakpoints
each require two MSP430 hardware breakpoints.
SLAU157Y-May 2005—Revised May 2013 Development Flow 13

Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Using the Integrated Debugger www.ti.com

Table 2-1. Device Architecture, Breakpoints, and Other Emulation Features

’) Break- Range LPMx.5
Device Artﬂrﬁfeﬁgre l;_l\f'\gg J%I'-\ANCI;%) points Brga?k- Ccc:)lr?tcrlgl Seqsltjztrfcer glrj?feer Debugging
(N) points Support
CC430F512x MSP430Xv2 X X 3 X X X
CC430F513x MSP430Xv2 X X 3 X X
CC430F514x MSP430Xv2 X X 3 X X X
CC430F612x MSP430Xv2 X X 3 X X
CC430F613x MSP430Xv2 X X 3 X X
CC430F614x MSP430Xv2 X X 3 X X X
MSP430AFE2xx MSP430 X X 2 X
MSP430BT5190 MSP430Xv2 X X 8 X X X X
MSP430F11x1 MSP430 X 2
MSP430F11x2 MSP430 X 2
MSP430F12x MSP430 X 2
MSP430F12x2 MSP430 X 2
MSP430F13x MSP430 X 3 X
MSP430F14x MSP430 X 3 X
MSP430F15x MSP430 X 8 X X X X
MSP430F16x MSP430 X 8 X X X X
MSP430F161x MSP430 X 8 X X X X
MSP430F20xx MSP430 X X 2 X
MSP430F21x1 MSP430 X 2 X
MSP430F21x2 MSP430 X X 2 X
MSP430F22x2 MSP430 X X 2 X
MSP430F22x4 MSP430 X X 2 X
MSP430F23x MSP430 X 3 X X
MSP430F23x0 MSP430 X 2 X
MSP430F24x MSP430 X 3 X X
MSP430F241x MSP430X X 8 X X X X
MSP430F2410 MSP430 X 3 X X
MSP430F261x MSP430X X 8 X X X X
MSP430G2xxx MSP430 X X 2 X
MSP430F41x MSP430 X 2 X
MSP430F41x2 MSP430 X X 2 X
MSP430F42x MSP430 X 2 X
MSP430FE42x MSP430 X 2 X
MSP430FE42x2 MSP430 X 2 X
MSP430FW42x MSP430 X 2 X
MSP430F42x0 MSP430 X 2 X
MSP430FG42x0 MSP430 X 2 X
MSP430F43x MSP430 X 8 X X X X
MSP430FG43x MSP430 X 2 X
MSP430F43x1 MSP430 X 2 X
MSP430F44x MSP430 X 8 X X X X
MSP430F44x1 MSP430 X 8 X X X X
MSP430F461x MSP430X X 8 X X X X
MSP430FG461x MSP430X X 8 X X X X
MSP430F461x1 MSP430X X 8 X X X X

@ The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire (SBW) interface. This interface is supported only by the USB
emulators (eZ430-xxxx and MSP-FET430UIF USB JTAG emulator) and the MSP-GANG430 production programming tool.

14 Development Flow SLAU157Y-May 2005—-Revised May 2013
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS

INSTRUMENTS

www.ti.com

Using the Integrated Debugger

Table 2-1. Device Architecture, Breakpoints, and Other Emulation Features (continued)

Device MSP430 awire 2-Wire ﬁg?:tks Sf‘:{fke_ Clock State Trace D;f u"g’;ﬁ] .
Architecture JTAG JTAG (N) points Control Sequencer Buffer Support

MSP430F47x MSP430 X 2 X

MSP430FG47x MSP430 X 2 X

MSP430F47x3 MSP430 X 2 X

MSP430F47x4 MSP430 X 2 X

MSP430F471xx MSP430X X 8 X X X X
MSP430F51x1 MSP430Xv2 X X 3 X X

MSP430F51x2 MSP430Xv2 X X 3 X X

MSP430F52xx MSP430Xv2 X X 8 X X X X
MSP430F530x MSP430Xv2 X X 3 X X

MSP430F5310 MSP430Xv2 X X 3 X X

MSP430F532x MSP430Xv2 X X 8 X X X X
MSP430F533x MSP430Xv2 X X 8 X X X X
MSP430F534x MSP430Xv2 X X 8 X X X X
MSP430F54xx MSP430Xv2 X X 8 X X X X
MSP430F54xxA MSP430Xv2 X X 8 X X X X
MSP430SL54xxA MSP430Xv2 X X 8 X X X X
MSP430F550x MSP430Xv2 X X 3 X X

MSP430F5510 MSP430Xv2 X X 3 X X

MSP430F552x MSP430Xv2 X X 8 X X X X
MSP430F535x MSP430Xv2 X X 8 X X X X X
MSP430F563x MSP430Xv2 X X 8 X X X X
MSP430F565x MSP430Xv2 X X 8 X X X X X
MSP430FR57xx MSP430Xv2 X X 3 X X X
MSP430FR59xx MSP430Xv2 X X 3 X X X
MSP430F643x MSP430Xv2 X X 8 X X X X
MSP430F645x MSP430Xv2 X X 8 X X X X X
MSP430F665x MSP430Xv2 X X 8 X X X X X
MSP430F663x MSP430Xv2 X X 8 X X X X X
MSP430F67xx MSP430Xv2 X X 3 X X

MSP430L092 MSP430Xv2 X 2 X

MSP430TCHS5E MSP430 X X 2 X

2.2.2 Using Breakpoints

If the debugger is started with greater than N breakpoints set and software breakpoints are disabled, a
message is shown that informs the user that not all breakpoints can be enabled. Note that CCS permits

any number of breakpoints to be set, regardless of the Use Software Breakpoints setting of CCS. If
software breakpoints are disabled, a maximum of N breakpoints can be set within the debugger.

Resetting a program requires a breakpoint, which is set on the address defined in Project — Properties —
Debug — Generic Debugger Options — Auto Run Options — Run to symbol.

The Run To Cursor operation temporarily requires a breakpoint.

Console I/0 (CIO) functions, such as printf, require the use of a breakpoint. If these functions are compiled

in, but you do not wish to use a breakpoint, disable CIO functionality by changing the option in Project —
Properties — Debug — Generic Debug Options — Enable CIO function use.

SLAU157Y-May 2005—Revised May 2013
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

Development Flow

15

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Using the Integrated Debugger www.ti.com

2.2.2.1 Breakpoints in CCS v5.4

CCS supports a number of predefined breakpoint types that can be selected by opening a menu found
next to the Breakpoints icon in the Breakpoint window (Window — Show View — Breakpoints). In addition
to traditional breakpoints, CCS allows setting watchpoints to break on a data address access instead of an
address access. The properties of breakpoints and watchpoints can be changed in the debugger by right
clicking on the breakpoint and selecting Properties.

Break after program address

Stops code execution when the program attempts to execute code after a specific address.
Break before program address

Stops code execution when the program attempts to execute code before a specific address.
Break in program range

Stops code execution when the program attempts to execute code in a specific range.

Break on DMA transfer

Break on DMA transfer in range

Breaks when a DMA access within a specified address range occurs.

Break on stack overflow

It is possible to debug the applications that caused the stack overflow. Set Break on Stack Overflow
(right click in debug window and then select "Break on Stack Overflow" in the context menu). The
program execution stops on the instruction that caused the stack overflow. The size of the stack can
be adjusted in Project — Properties — C/C++ Build — MSP430 Linker — Basic Options.

Breakpoint

Sets a breakpoint.

Hardware breakpoint

Forces a hardware breakpoint if software breakpoints are not disabled.

Watch on data address range

Stops code execution when data access to an address in a specific range occurs.

Watch

Stops code execution if a specific data access to a specific address is made.

Watchpoint with data

Stops code execution if a specific data access to a specific address is made with a specific value.

Restriction 1: Watchpoints are applicable to global variables and non-register local variables. In the
latter case, set a breakpoint (BP) to halt execution in the function where observation of the variable is
desired (set code BP there). Then set the watchpoint and delete (or disable) the code breakpoint in the
function and run or restart the application.

Restriction 2: Watchpoints are applicable to variables 8 bits and 16 bits wide.

NOTE: Not all options are available on every MSP430 derivative (see Table 2-1). Therefore, the
number of predefined breakpoint types in the breakpoint menu varies depending on the
selected device.

For more information on advanced debugging with CCS, see the application report Advanced Debugging
Using the Enhanced Emulation Module (EEM) With CCS Version 4 (SLAA393).

16 Development Flow SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAA393
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

Appendix A
I ’.{‘IE)S(’;A"EUMENTS SLAU157Y—-May 2005—Revised May 2013

Frequently Asked Questions

This appendix presents solutions to frequently asked questions regarding hardware, program development
and debugging tools.

Topic Page

N O o = 0 Y= = 18

A.2 Program Development (Assembler, C-Compiler, Linker, IDE)c.coveiiiiiiiiiiiiiiiieennns 18

R B B 1= o 11 [0 o 1 o P 19
SLAU157Y-May 2005—Revised May 2013 Frequently Asked Questions 17

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Hardware www.ti.com

Al

A.2

Hardware
For a complete list of hardware related FAQs, see the MSP430 Hardware Tools User's Guide SLAU278.

Program Development (Assembler, C-Compiler, Linker, IDE)

NOTE: Consider the CCS Release Notes

For the case of unexpected behavior, see the CCS Release Notes document for known bugs
and limitations of the current CCS version. This information can be accessed through the
menu item Start — All Programs — Texas Instruments — Code Composer Studio —
Release Notes.

1. A common MSP430 "mistake" is to fail to disable the watchdog mechanism; the watchdog is
enabled by default, and it resets the device if not disabled or properly managed by the application. Use
WDTCL = WDTPW + WDTHOLD; to explicitly disable the Watchdog. This statement is best placed in the
_system_pre_init() function that is executed prior to main(). If the Watchdog timer is not disabled, and
the Watchdog triggers and resets the device during CSTARTUP, the source screen goes blank, as
the debugger is not able to locate the source code for CSTARTUP. Be aware that CSTARTUP can
take a significant amount of time to execute if a large number of initialized global variables are used.

int _systempre_init(void)

{

/* Insert your lowlevel initializations here */
WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog ti ner
/* x|

/* Choose if segnment initialization */

/* shoul d be done or not. */

/* Return: O to omit initialization */

/* 1toruninitialization */

/* x|

return (1);

}

2. Within the C libraries, GIE (Global Interrupt Enable) is disabled before (and restored after) the
hardware multiplier is used.

3. ltis possible to mix assembly and C programs within CCS. See the "Interfacing C/C++ With
Assembly Language" chapter of the MSP430 Optimizing C/C++ Compiler User's Guide (literature
number SLAU132).

4. Constant definitions (#define) used within the .h files are effectively reserved and include, for
example, C, Z, N, and V. Do not create program variables with these names.

5. Compiler optimization can remove unused variables and statements that have no effect and can
affect debugging. To prevent this, these variables can be declared vol ati | e; for example:

volatile int i;

18

Frequently Asked Questions SLAU157Y-May 2005—Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU278
http://www.ti.com/lit/pdf/SLAU132
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

I

www.ti.com

TEXAS
INSTRUMENTS

Debugging

A.3

Debugging

The debugger is part of CCS and can be used as a standalone application. This section is applicable
when using the debugger both standalone and from the CCS IDE.

NOTE: Consider the CCS release notes

In case of unexpected behavior, see the CCS Release Notes document for known bugs and
limitations of the current CCS version. To access this information, click Start — All Programs
— Texas Instruments — Code Composer Studio — Release Notes.

1. The debugger reports that it cannot communicate with the device. Possible solutions to this

problem include:

« Ensure that the correct debug interface and corresponding port number have been selected in
Project — Properties — General — Device — Connection.

« Ensure that the jumper settings are configured correctly on the target hardware.

< Ensure that no other software application (for example, printer drivers) has reserved or taken
control of the COM or parallel port, which would prevent the debug server from communicating
with the device.

* Open the Device Manager and determine if the driver for the FET tool has been correctly installed
and if the COM or parallel port is successfully recognized by the Windows OS. Check the PC BIOS
for the parallel port settings (see FAQ Debugging #5). For users of IBM or Lenovo ThinkPad®
computers, try port setting LPT2 and LPT3, even if operating system reports that the parallel port is
located at LPT1.

* Restart the computer.

Ensure that the MSP430 device is securely seated in the socket (so that the “fingers" of the socket
completely engage the pins of the device), and that its pin 1 (indicated with a circular indentation on
the top surface) aligns with the "1" mark on the PCB.

CAUTION
Possible Damage To Device

Always handle MSP430 devices with a vacuum pick-up tool only; do not use
your fingers, as you can easily bend the device pins and render the device
useless. Also, always observe and follow proper ESD precautions.

. The debugger can debug applications that utilize interrupts and low-power modes. See FAQ

Debugging #17).

. The debugger cannot access the device registers and memory while the device is running. The

user must stop the device to access device registers and memory.

. The debugger reports that the device JTAG security fuse is blown. With current MSP430-

FET430UIF JTAG interface tools, there is a weakness when adapting target boards that are powered
externally. This leads to an accidental fuse check in the MSP430 and results in the JTAG security fuse
being recognized as blown although it is not.

Workarounds:

e Connect the device RST/NMI pin to JTAG header (pin 11), MSP-FET430UIF interface tools are
able to pull the RST line, this also resets the device internal fuse logic.

* Do not connect both V.. Tool (pin 2) and V. Target (pin 4) of the JTAG header. Specify a value for
Vc in the debugger that is equal to the external supply voltage.

. The parallel port designators (LPTx) have the following physical addresses: LPT1 = 378h,

LPT2 = 278h, LPT3 = 3BCh. The configuration of the parallel port (ECP, Compatible, Bidirectional,
Normal) is not significant; ECP seems to work well. See FAQ Debugging #1 for additional hints on
solving communication problems between the debugger and the device.

SLAU157Y-May 2005—Revised May 2013 Frequently Asked Questions 19
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Debugging www.ti.com

6. The debugger asserts RST/NMI to reset the device when the debugger is started and when the
device is programmed. The device is also reset by the debugger Reset button, and when the device is
manually reprogrammed (using Reload), and when the JTAG is resynchronized (using Resynchronize
JTAG). When RST/NMI is not asserted (low), the debugger sets the logic driving RST/NMI to high
impedance, and RST/NMI is pulled high via a resistor on the PCB.

RST/NMI is asserted and negated after power is applied when the debugger is started. RST/NMI is
then asserted and negated a second time after device initialization is complete.

7. The debugger can debug a device whose program reconfigures the function of the RST/NMI pin
to NMI.

8. The level of the XOUT/TCLK pin is undefined when the debugger resets the device. The logic
driving XOUT/TCLK is set to high impedance at all other times.

9. When making current measurements of the device, ensure that the JTAG control signals are
released, otherwise the device is powered by the signals on the JTAG pins and the measurements are
erroneous. See FAQ Debugging #10.

10. When the debugger has control of the device, the CPU is on (that is, it is not in low-power mode)
regardless of the settings of the low-power mode bits in the status register. Any low-power mode
condition is restored prior to STEP or GO. Consequently, do not measure the power consumed by the
device while the debugger has control of the device. Instead, run the application using Release JTAG
on run.

11. The MEMORY window correctly displays the contents of memory where it is present. However, the
MEMORY window incorrectly displays the contents of memory where there is none present.
Memory should be used only in the address ranges as specified by the device data sheet.

12. The debugger utilizes the system clock to control the device during debugging. Therefore, device
counters and other components that are clocked by the Main System Clock (MCLK) are affected
when the debugger has control of the device. Special precautions are taken to minimize the effect
upon the watchdog timer. The CPU core registers are preserved. All other clock sources (SMCLK and
ACLK) and peripherals continue to operate normally during emulation. In other words, the Flash
Emulation Tool is a partially intrusive tool.

Devices that support clock control can further minimize these effects by stopping the clock(s) during
debugging (Project — Properties — CCS Debug Settings — Target — Clock Control).

13. When programming the flash, do not set a breakpoint on the instruction immediately following
the write to flash operation. A simple work-around to this limitation is to follow the write to flash
operation with a NOP and to set a breakpoint on the instruction following the NOP.

14. Multiple internal machine cycles are required to clear and program the flash memory. When single
stepping over instructions that manipulate the flash, control is given back to the debugger before
these operations are complete. Consequently, the debugger updates its memory window with
erroneous information. A workaround for this behavior is to follow the flash access instruction with a
NOP and then step past the NOP before reviewing the effects of the flash access instruction.

15. Bits that are cleared when read during normal program execution (that is, interrupt flags) are
cleared when read while being debugged (that is, memory dump, peripheral registers).

Using certain MSP430 devices with enhanced emulation logic such as MSP430F43x and MSP430F44x
devices, bits do not behave this way (that is, the bits are not cleared by the debugger read operations).

16. The debugger cannot be used to debug programs that execute in the RAM of F12x and F41x
devices. A workaround for this limitation is to debug programs in flash.

17. While single stepping with active and enabled interrupts, it can appear that only the interrupt
service routine (ISR) is active (that is, the non-ISR code never appears to execute, and the single
step operation stops on the first line of the ISR). However, this behavior is correct because the device
processes an active and enabled interrupt before processing non-ISR (that is, mainline) code. A
workaround for this behavior is, while within the ISR, to disable the GIE bit on the stack, so that
interrupts are disabled after exiting the ISR. This permits the non-ISR code to be debugged (but
without interrupts). Interrupts can later be re-enabled by setting GIE in the status register in the
Register window.

On devices with Clock Control, it may be possible to suspend a clock between single steps and delay
an interrupt request (Project — Properties — CCS Debug Settings — Target — Clock Control).

20 Frequently Asked Questions SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com Debugging

18. On devices equipped with a Data Transfer Controller (DTC), the completion of a data transfer cycle
preempts a single step of a low-power mode instruction. The device advances beyond the low-
power mode instruction only after an interrupt is processed. Until an interrupt is processed, it appears
that the single step has no effect. A workaround to this situation is to set a breakpoint on the
instruction following the low-power mode instruction, and then execute (Run) to this breakpoint.

19. The transfer of data by the Data Transfer Controller (DTC) may not stop precisely when the
DTC is stopped in response to a single step or a breakpoint. When the DTC is enabled and a
single step is performed, one or more bytes of data can be transferred. When the DTC is enabled and
configured for two-block transfer mode, the DTC may not stop precisely on a block boundary when
stopped in response to a single step or a breakpoint.

20. Breakpoints. CCS supports a number of predefined breakpoint and watchpoint types. See
Section 2.2.2 for a detailed overview.

SLAU157Y-May 2005—Revised May 2013 Frequently Asked Questions 21
Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

I3 TEXAS
INSTRUMENTS

Appendix B

SLAU157Y—-May 2005—Revised May 2013

Migration of C Code from IAR 2.x, 3.x, 4.x to CCS

Source code for the TI CCS C compiler and source code for the IAR Embedded Workbench C compiler
are not fully compatible. Standard ANSI/ISO C code is portable between these tools, but implementation-
specific extensions differ and must be ported. This appendix describes the major differences between the
two compilers.

Topic Page
B.1 Interrupt Vector Definitionooioiiiiiiii et e e e e e e 23
B.2 INtriNSIC FUNCHIONS ittt ittt ettt ettt et a st e e e e et e e e e e eaeaasaeaneaaaaens 23
B.3 Data and FUNCLION PlaCemeENntcc.iiiiiiiiiiiiii ittt e e e e e e aeaaeaeas 23
0 A O @F- 1 1 To IO 0] 4 V=1 o} o) o 1= PP 25
2T @ d L= gl 0 =T (=] o PPN 25
22 Migration of C Code from IAR 2.x, 3., 4.x to CCS SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

I3 TEXAS
INSTRUMENTS
www.ti.com Interrupt Vector Definition
B.1 Interrupt Vector Definition
IAR ISR declarations (using the #pragma vector =) are now fully supported in CCS. However, this is not
the case for all other IAR pragma directives.
B.2 Intrinsic Functions
CCS and IAR tools use the same instructions for MSP430 processor-specific intrinsic functions.
B.3 Data and Function Placement

B.3.1 Data Placement at an Absolute Location

The scheme implemented in the IAR compiler using either the @ operator or the #pragma location
directive is not supported with the CCS compiler:

/* 1 AR C Code */

__no_init char al pha @0x0200; /* Place ‘alpha" at address 0x200 */

#pragna | ocation = 0x0202

const int beta;

If absolute data placement is needed, this can be achieved with entries into the linker command file, and
then declaring the variables as extern in the C code:

/* CCS Linker Command File Entry */

al pha = 0x200;

beta = 0x202;

/* CCS C Code */

extern char al pha;

extern int beta;

The absolute RAM locations must be excluded from the RAM segment; otherwise, their content may be
overwritten as the linker dynamically allocates addresses. The start address and length of the RAM block
must be modified within the linker command file. For the previous example, the RAM start address must
be shifted 4 bytes from 0x0200 to 0x0204, which reduces the length from 0x0080 to 0x007C (for an
MSP430 device with 128 bytes of RAM):

/* CCS Linker Command File Entry */

/**/

/* SPECI FY THE SYSTEM MEMORY MAP */

/**/
MEMORY /* assuming a device with 128 bytes of RAM */
{

RAM :origin = 0x0204, length = 0x007C /* was: origin = 0x200, |ength = 0x0080 */

The definitions of the peripheral register map in the linker command files (Ink_msp430xxxx.cmd) and the
device-specific header files (msp430xxxx.h) that are supplied with CCS are an example of placing data at
absolute locations.

NOTE: When a project is created, CCS copies the linker command file corresponding to the
selected MSP430 derivative from the include directory
(<Installation Root>\ccsv5\ccs_baseltools\compile\MSP430\include) into the project
directory. Therefore, ensure that all linker command file changes are done in the project
directory. This allows the use of project-specific linker command files for different projects
using the same device.

SLAU157Y-May 2005—Revised May 2013 Migration of C Code from IAR 2.x, 3.x, 4.x to CCS 23
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Data and Function Placement www.ti.com

B.3.2 Data Placement Into Named Segments

In IAR, it is possible to place variables into named segments using either the @ operator or a #pragma
directive:

/* 1 AR C Code */

_no_init int alpha @"MSEGVENT"; [/* Place ‘alpha into ‘ MYSEGVENT' */
#pragma | ocati on=" MYSEGVENT" /* Place ‘beta’ into ‘ MYSEGVENT' */
const int beta;

With the CCS compiler, the #pragma DATA_SECTION() directive must be used:
/* CCS C Code */

#pragma LOCATI ON(al pha, " MYSEGVENT")
int al pha;

#pragma LOCATI ON(beta, " MYSEGVENT")
int beta;

See Section B.5.3 for information on how to translate memory segment names between IAR and CCS.

B.3.3 Function Placement Into Named Segments

With the IAR compiler, functions can be placed into a named segment using the @ operator or the
#pragma location directive:

/* 1 AR C Code */

void g(void) @"MYSEGVENT"

{

}

#pragma | ocati on=" MYSEGVENT"
voi d h(void)

{

}

With the CCS compiler, the following scheme with the #pragma CODE_SECTION() directive must be
used:

/* CCS C Code */

#pragma CODE_SECTI ON(g, "MYSEGVENT")

voi d g(void)

{

}

See Section B.5.3 for information on how to translate memory segment names between IAR and CCS.

24

Migration of C Code from IAR 2.x, 3., 4.x to CCS SLAU157Y-May 2005—Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

I} TEXAS
INSTRUMENTS
www.ti.com C Calling Conventions
B.4 C Calling Conventions
The CCS and IAR C-compilers use different calling conventions for passing parameters to functions.
When porting a mixed C and assembly project to the TI CCS code generation tools, the assembly
functions need to be modified to reflect these changes. For detailed information about the calling
conventions, see the TI MSP430 Optimizing C/C++ Compiler User's Guide (SLAU132) and the IAR
MSP430 C/C++ Compiler Reference Guide.
The following example is a function that writes the 32-bit word 'Data’ to a given memory location in big-
endian byte order. It can be seen that the parameter ‘Data’ is passed using different CPU registers.
IAR Version:
; void WiteDWBE(unsigned char *Add, unsigned |ong Data)
; Wites a DAORD to the given nmenory location in big-endian format. The
; menory address MJUST be word-aligned.
;o IN R12 Addr ess (Add)
; R14 Lower Word (Dat a)
; R15 Upper Word (Dat a)
Wit eDVWBE
swpb R14 ; Swap bytes in | ower word
swpb R15 ; Swap bytes in upper word
mov.w R15, 0(R12) ; Wite 1st word to nenory
nov.w R14, 2(R12) ; Wite 2nd word to nenory
ret
CCS Version:
; void WiteDWBE(unsigned char *Add, unsigned | ong Data)
; Wites a DAMORD to the given menory |ocation in big-endian format. The
; menory address MJST be word-aligned.
; IN R12 Addr ess (Add)
; R13 Lower Word (Data)
; R14 Upper Wrd (Data)
Wit eDVBE
swpb R13 ; Swap bytes in | ower word
swpb R14 ; Swap bytes in upper word
mov.w R14, 0(R12) ; Wite 1st word to nenory
mv.w R13, 2(R12) ; Wite 2nd word to nenory
ret
B.5 Other Differences

B.5.1 Initializing Static and Global Variables

The ANSI/ISO C standard specifies that static and global (extern) variables without explicit initializations
must be pre-initialized to 0 (before the program begins running). This task is typically performed when the
program is loaded and is implemented in the IAR compiler:

/* 1 AR, global variable, initialized to O upon programstart */
int Counter;

However, the TI CCS compiler does not pre-initialize these variables; therefore, it is up to the application
to fulfill this requirement:

/* CCS, global variable, manually zero-initialized */
int Counter = O;

SLAU157Y-May 2005—Revised May 2013 Migration of C Code from IAR 2.x, 3.x, 4.x to CCS 25
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU132
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Other Differences www.ti.com

B.5.2 Custom Boot Routine

With the IAR compiler, the C startup function can be customized, giving the application a chance to
perform early initializations such as configuring peripherals, or omit data segment initialization. This is
achieved by providing a customized __low_level_init() function:

/* I AR C Code */

int __lowlevel_init(void)

{ =

/* Insert your lowlevel initializations here */
/* */
/* Choose if segnment initialization */
/* shoul d be done or not. */
/* Return: O to omt initialization */
/* l1toruninitialization */
/* */
return (1);

}

The return value controls whether or not data segments are initialized by the C startup code. With the
CCS C compiler, the custom boot routine name is _system_pre_init(). It is used the same way as in the
IAR compiler.

/* CCS C Code */

int _systempre_init(void)

{

/* Insert your lowlevel initializations here */
/* */

/* Choose if segment initialization */

/* shoul d be done or not. */

/* Return: O to omit initialization */

/* 1 toruninitialization */

/* */

return (1);

}

Note that omitting segment initialization with both compilers omits both explicit and non-explicit
initialization. The user must ensure that important variables are initialized at run time before they are used.

B.5.3 Predefined Memory Segment Names

Memory segment names for data and function placement are controlled by device-specific linker
command files in both CCS and IAR tools. However, different segment names are used. See the linker
command files for more detailed information. The following table shows how to convert the most
commonly used segment names.

Description CCS Segment Name IAR Segment Name
DATA16_N
RAM .bss DATA16_|
DATALl6_Z
Stack (RAM) .stack CSTACK
Main memory (flash or ROM) text CODE
infoA INFOA
Information memory (flash or ROM) . INFOB
.infoB
INFO
.int00
.int01
Interrupt vectors (flash or ROM) INTVEC
.int14
Reset vector (flash or ROM) .reset RESET
Migration of C Code from IAR 2.x, 3., 4.x to CCS SLAU157Y-May 2005—Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com Other Differences

B.5.4 Predefined Macro Names

Both IAR and CCS compilers support a few non ANSI/ISO standard predefined macro names, which help
creating code that can be compiled and used on different compiler platforms. Check if a macro name is
defined using the #ifdef directive.

Description CCS Macro Name IAR Macro Name
Is MSP430 the target and is a particular compiler
platform used? __MSP430__ __ICC430__
Is a particular compiler platform used? __TI_COMPILER_VERSION___ __IAR_SYSTEMS_ICC__
Is a C header file included from within assembly ASM HEADER IAR SYSTEMS ASM
source code? — - — — - - —
SLAU157Y-May 2005—Revised May 2013 Migration of C Code from IAR 2.x, 3.x, 4.x to CCS 27

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

Appendix C
TEXAS SLAU157Y—-May 2005—Revised May 2013

INSTRUMENTS

Migration of Assembler Code from IAR 2.x, 3.X, 4.x to CCS

Source for the TI CCS assembler and source code for the IAR assembler are not 100% compatible. The
instruction mnemonics are identical, but the assembler directives are somewhat different. This appendix
describes the differences between the CCS assembler directives and the IAR assembler directives.

Topic Page
C.1 Sharing C/C++ Header Files With Assembly SOUICecccevviiiriiiiiiiiiiiiiiiiiieieeeennn 29
O3 1= T | .0 1= O 0] | o P 29
C.3 Translating A430 Assembler Directives to ASm430 DireCtiveScocvevieieieiniieiennnnnn. 30
28 Migration of Assembler Code from IAR 2.x, 3.x, 4.x to CCS SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

I3 TEXAS
INSTRUMENTS
www.ti.com Sharing C/C++ Header Files With Assembly Source
C.1 Sharing C/C++ Header Files With Assembly Source
The IAR A430 assembler supports certain C/C++ preprocessor directives directly and, thereby, allows
direct including of C/C++ header files such as the MSP430 device-specific header files (msp430xxxx.h)
into the assembly code:
#i ncl ude "nmsp430x14x. h" // Include device header file
With the CCS Asm430 assembler, a different scheme that uses the .cdecls directive must be used. This
directive allows programmers in mixed assembly and C/C++ environments to share C/C++ headers
containing declarations and prototypes between the C/C++ and assembly code:
.cdecls C LIST,"nsp430x14x. h" ; Include device header file
More information on the .cdecls directive can be found in the MSP430 Assembly Language Tools User's
Guide (literature number SLAU131).
C.2 Segment Control
The CCS Asm430 assembler does not support any of the IAR A430 segment control directives such as
ORG, ASEG, RSEG, and COMMON.
Description Asm430 Directive (CCS)
Reserve space in the .bss uninitialized section .bss
Reserve space in a named uninitialized section .usect
Allocate program into the default program section (initialized) text
Allocate data into a named initialized section .sect
To allocate code and data sections to specific addresses with the CCS assembler, it is necessary to
create and use memory sections defined in the linker command files. The following example demonstrates
interrupt vector assignment in both IAR and CCS assembly to highlight the differences.
Interrupt Vectors Used MSP430x11x1 and 12x(2) - | AR Assenbl er
| oRe OFFFEh ; MBP430 RESET Vect or
DW RESET ;
ORG OFFF2h ; Timer _AO Vector
DW TAO_I SR ;
interrupt Vectors Used MSP430x11x1 and 12x(2) - CCS Assenbl er ’
' . sect ".reset” ; MBP430 RESET Vect or
.short RESET ;
. sect ".int09" ; Timer _AO Vector
.short TAO_I SR ;
Both examples assume that the standard device support files (header files, linker command files) are
used. Note that the linker command files are different between IAR and CCS and cannot be reused. See
Section B.5.3 for information on how to translate memory segment names between IAR and CCS.
SLAU157Y-May 2005—Revised May 2013 Migration of Assembler Code from IAR 2.x, 3.x, 4.x to CCS 29

Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU131
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Translating A430 Assembler Directives to Asm430 Directives www.ti.com

C.3 Translating A430 Assembler Directives to Asm430 Directives

C.3.1 Introduction

The following sections describe, in general, how to convert assembler directives for the IAR A430
assembler (A430) to Texas Instruments CCS Asm430 assembler (Asm430) directives. These sections are
intended only as a guide for translation. For detailed descriptions of each directive, see either the MSP430
Assembly Language Tools User's Guide (SLAU131), from Texas Instruments, or the MSP430 IAR
Assembler Reference Guide from IAR.

NOTE: Only the assembler directives require conversion

Only the assembler directives require conversion, not the assembler instructions. Both
assemblers use the same instruction mnemonics, operands, operators, and special symbols
such as the section program counter ($) and the comment delimiter (;).

The A430 assembler is not case sensitive by default. These sections show the A430 directives written in
uppercase to distinguish them from the Asm430 directives, which are shown in lower case.

C.3.2 Character Strings

In addition to using different directives, each assembler uses different syntax for character strings. A430
uses C syntax for character strings: A quote is represented using the backslash character as an escape
character together with quote (\") and the backslash itself is represented by two consecutive backslashes
(V). In Asm430 syntax, a quote is represented by two consecutive quotes ("); see examples:

Character String Asm430 Syntax (CCS) A430 Syntax (IAR)
PLAN "C" "PLAN "™C"™" "PLAN \"C\""
\dos\command.com "\dos\command.com" "\\dos\\command.com"
Concatenated string (for example, Error 41) - "Error " "41"
30 Migration of Assembler Code from IAR 2.x, 3.x, 4.x to CCS SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU131
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com

Translating A430 Assembler Directives to Asm430 Directives

C.3.3 Section Control Directives

Asm430 has three predefined sections into which various parts of a program are assembled. Uninitialized
data is assembled into the .bss section, initialized data into the .data section, and executable code into the

.text section.

A430 also uses sections or segments, but there are no predefined segment names. Often, it is convenient
to adhere to the names used by the C compiler; DATA16_Z for uninitialized data, CONST for constant
(initialized) data, and CODE for executable code. The following table uses these names.

A pair of segments can be used to make initialized, modifiable data PROM-able. The ROM segment would
contain the initializers and would be copied to RAM segment by a start-up routine. In this case, the
segments must be exactly the same size and layout.

Description Asm430 Directive (CCS) A430 Directive (IAR)
Reserve size bytes in the .bss (uninitialized data) bss® @
section
Assemble into the .data (initialized data) section .data RSEG const
Assemble into a named (initialized) section .sect RSEG
Assemble into the .text (executable code) section text RSEG code
Reserve space in a named (uninitialized) section .usect® @
Alignment on byte boundary .align 1 @
Alignment on word boundary .align 2 EVEN

@ bss and .usect do not require switching back and forth between the original and the uninitialized section. For example:

; | AR Assenbl er Exanpl e
RSEG DATA16_N ; Switch to DATA segnent
EVEN ; Ensure proper al i gnnment
ADCResul t: DS 2 ; Allocate 1 word in RAM
Fl ags: DS 1 ; Allocate 1 byte in RAM
RSEG CODE ; Switch back to CODE segnent
; CCS Assenbl er Exanple #1
ADCResul t .usect ".bss",2,2 ; Allocate 1 word in RAM
Fl ags .usect ".bss",1 ; Allocate 1 byte in RAM
; CCS Assenbl er Exanple #2
. bss ADCResult, 2,2 ; Allocate 1 word in RAM
. bss Fl ags, 1 ; Allocate 1 byte in RAM

@ Space is reserved in an uninitialized segment by first switching to that segment, then defining the appropriate memory block, and
then switching back to the original segment. For example:

RSEG DATA16_Z
LABEL: DS 16 ;
RSEG CODE

Reserve 16

byt e

@ Initialization of bit-field constants (.field) is not supported, therefore, the section counter is always byte-aligned.

C.3.4 Constant Initialization Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Initialize one or more successive bytes or text strings | .byte or .string DB
Initialize a 32-bit IEEE floating-point constant .double or .float DF
Initialize a variable-length field field @
Reserve size bytes in the current section .Space DS
Initialize one or more text strings Initialize one or more text strings DB
Initialize one or more 16-bit integers .word Dw
Initialize one or more 32-bit integers .long DL

@ nitialization of bit-field constants (.field) is not supported. Constants must be combined into complete words using DW.
A430

; Asmi30 code ;
.field 5,3 \
field 12,4 |
.field 30,8 /

-> Dw

code

(30<<(4+3))] (12<<3)|5 ;

equal s 3941

SLAU157Y-May 2005—Revised May 2013
Submit Documentation Feedback

Migration of Assembler Code from IAR 2.x, 3.x, 4.xto CCS 31

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

Translating A430 Assembler Directives to Asm430 Directives

13 TEXAS
INSTRUMENTS

www.ti.com

C.3.5 Listing Control Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Allow false conditional code block listing felist LSTCND-
Inhibit false conditional code block listing fenolist LSTCND+
Set the page length of the source listing length PAGSIZ
Set the page width of the source listing .width COL
Restart the source listing list LSTOUT+
Stop the source listing .nolist LSTOUT-
Allow macro listings and loop blocks .mlist t§$§>|$: ((Ilzggrg?ocks)
Inhibit macro listings and loop blocks .mnolist I[§$E>I$ ((:Tc])igrg?ocks)
Select output listing options .option @
Eject a page in the source listing .page PAGE
Allow expanded substitution symbol listing .sslist @
Inhibit expanded substitution symbol listing .ssnolist @
Print a title in the listing page header Ltitle @

@ No A430 directive directly corresponds to .option. The individual listing control directives (above) or the command-line option -c
(with suboptions) should be used to replace the .option directive.

@ There is no directive that directly corresponds to .sslist and .ssnolist.

@ The title in the listing page header is the source file name.

C.3.6 File Reference Directives

Description

Asm430 Directive (CCS)

A430 Directive (IAR)

Include source statements from another file

.copy or .include

#include or $

Identify one or more symbols that are defined in the

current module but defined in another module

current module and used in other modules -def PUBLIC or EXPORT
Identify one or more global (external) symbols .global @
Define a macro library .mlib @
Identify one or more symbols that are used in the ref EXTERN or IMPORT

@ The directive .global functions as either .def if the symbol is defined in the current module, or .ref otherwise. PUBLIC or EXTERN
must be used as applicable with the A430 assembler to replace the .global directive.

@ The concept of macro libraries is not supported. Include files with macro definitions must be used for this functionality.

Modules may be used with the Asm430 assembler to create individually linkable routines. A file may
contain multiple modules or routines. All symbols except those created by DEFINE, #define (IAR
preprocessor directive) or MACRO are "undefined" at module end. Library modules are, furthermore,
linked conditionally. This means that a library module is included in the linked executable only if a public
symbol in the module is referenced externally. The following directives are used to mark the beginning and

end of modules in the A430 assembler.

Additional A430 Directives (IAR)

A430 Directive (IAR)

Start a program module

NAME or PROGRAM

Start a library module

MODULE or LIBRARY

Terminate the current program or library module

ENDMOD

32 Migration of Assembler Code from IAR 2.x, 3.x, 4.x to CCS

SLAU157Y-May 2005—Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com Translating A430 Assembler Directives to Asm430 Directives

C.3.7 Conditional Assembly Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Optional repeatable block assembly .break @
Begin conditional assembly .if IF
Optional conditional assembly .else ELSE
Optional conditional assembly .elseif ELSEIF
End conditional assembly .endif ENDIF
End repeatable block assembly .endloop ENDR
Begin repeatable block assembly .loop REPT

@ There is no directive that directly corresponds to .break. However, the EXITM directive can be used with other conditionals if
repeatable block assembly is used in a macro, as shown:

SEQ MACRO FROM TO ; Initialize a sequence of byte constants
LOCAL X
X SET FROM
REPT TO FROW1 ; Repeat from FROMto TO
I F X>255 ; Break if X exceeds 255
EXITM
ENDI F
DB X ; Initialize bytes to FROM .. TO
X SET X+1 ; Increment counter
ENDR
ENDM

C.3.8 Symbol Control Directives

The scope of assembly-time symbols differs in the two assemblers. In Asm430, definitions can be global
to a file or local to a module or macro. Local symbols can be undefined with the .newblock directive. In
A430, symbols are either local to a macro (LOCAL), local to a module (EQU), or global to a file (DEFINE).
In addition, the preprocessor directive #define also can be used to define local symbols.

Description Asm430 Directive (CCS) A430 Directive (IAR)

Assign a character string to a substitution symbol .asg SET or VAR or ASSIGN
Undefine local symbols .newblock @

Equate a value with a symbol .equ or .set EQU or =

Perform arithmetic on numeric substitution symbols .eval SET or VAR or ASSIGN

End structure definition .endstruct @

Begin a structure definition .struct @

Assign structure attributes to a label tag @

@ No A430 directive directly corresponds to .newblock. However, #undef may be used to reset a symbol that was defined with the
#define directive. Also, macros or modules may be used to achieve the .newblock functionality because local symbols are
implicitly undefined at the end of a macro or module.

Definition of structure types is not supported. Similar functionality is achieved by using macros to allocate aggregate data and
base address plus symbolic offset, as shown:

MYSTRUCT: MACRO

()

DS 4

ENDM
LO DEFINE O
Hl DEFINE 2

RSEG DATA16_Z
X MYSTRUCT

RSEG CODE

MoV X+LO R4

SLAU157Y-May 2005—Revised May 2013
Submit Documentation Feedback

Migration of Assembler Code from IAR 2.x, 3.x, 4.x to CCS 33

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

Translating A430 Assembler Directives to Asm430 Directives

13 TEXAS
INSTRUMENTS

www.ti.com

C.3.9

Macro Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Define a macro .macro MACRO
Exit prematurely from a macro .mexit EXITM
End macro definition .endm ENDM

C.3.10 Miscellaneous Directives

Description

Asm430 Directive (CCS)

A430 Directive (IAR)

Send user-defined error messages to the output

device -emsg #error

Send user-defined messages to the output device .mmsg #message
Send user-defined warning messages to the Wms ®

output device : 9

Define a load address label Jabel @
Directive produced by absolute lister .setsect ASEG®
Directive produced by absolute lister .setsym EQU or =™
Program end .end END

@ The syntax of the #message directive is: #message "<string>"
This causes '#message <string>' to be output to the project build window during assemble and compile time.
@ Warning messages cannot be user-defined. #message may be used, but the warning counter is not incremented.

©® The concept of load-time addresses is not supported. Run-time and load-time addresses are assumed to be the same. To
achieve the same effect, labels can be given absolute (run-time) addresses by the EQU directives.

; Asmi30 code ; A430 code
.label load_start | oad_start:
Run_start: <code>

<code> | oad_end:
Run_end:

run_start: EQU 240H

.label 1oad_end run_end: EQU run_start +l oad_end-| oad_start
@ Although not produced by the absolute lister ASEG defines absolute segments and EQU can be used to define absolute
symbols.
MYFLAG EQU 23EH ; MYFLAG i s | ocated at 23E
ASEG 240H ; Absol ute segnent at 240
MAI N: MOV #23CH, SP ; MAIN is |located at 240

34

Migration of Assembler Code from IAR 2.x, 3.x, 4.x to CCS

Copyright © 2005-2013, Texas Instruments Incorporated

SLAU157Y-May 2005—Revised May 2013

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com

Translating A430 Assembler Directives to Asm430 Directives

C.3.11 Alphabetical Listing and Cross Reference of Asm430 Directives

Asm“?gCDSi;ec“"e A430 Directive (IAR) ASM?ggé;eC“"e A430 Directive (IAR)
.align ALIGN .loop REPT

.asg SET or VAR or ASSIGN .macro MACRO

.break See Conditional Assembly Directives .mexit EXITM

.bss See Symbol Control Directives .mlib See File Referencing Directives
.byte or .string DB .mlist LSTEXP+ (macro)

.cdecls ﬁhper?e_ﬁtrl(; c;:ljsps)gcr)g:ccﬂarations are LSTREP+ (loop blocks)

.copy or .include #include or $.mmsg #message (XXXXXX)

.data RSEG .mnolist LSTEXP- (macro)

.def PUBLIC or EXPORT LSTREP- (loop blocks)
.double Not supported .newblock See Symbol Control Directives
.else ELSE .nolist LSTOUT-

.elseif ELSEIF .option See Listing Control Directives
.emsg #error .page PAGE

.end END .ref EXTERN or IMPORT

.endif ENDIF .sect RSEG

.endloop ENDR .setsect See Miscellaneous Directives
.endm ENDM .setsym See Miscellaneous Directives
.endstruct See Symbol Control Directives .space DS

.equ or .set EQU or = .sslist Not supported

.eval SET or VAR or ASSIGN .ssnolist Not supported

.even EVEN .string DB

fclist LSTCND- .struct See Symbol Control Directives
fenolist LSTCND+ .tag See Symbol Control Directives
field See Constant Initialization Directives text RSEG

float See Constant Initialization Directives title See Listing Control Directives
.global See File Referencing Directives .usect See Symbol Control Directives
if IF width COL

label See Miscellaneous Directives .wmsg See Miscellaneous Directives
.length PAGSIZ .word Dw

list LSTOUT+

SLAU157Y-May 2005—Revised May 2013
Submit Documentation Feedback

Migration of Assembler Code from IAR 2.x, 3.X, 4.x to CCS

Copyright © 2005-2013, Texas Instruments Incorporated

35

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

Translating A430 Assembler Directives to Asm430 Directives

13 TEXAS
INSTRUMENTS

www.ti.com

C.3.12 Unsupported A430 Directives (IAR)
The following IAR assembler directives are not supported in the CCS Asm430 assembler:

Conditional Assembly Directives

Macro Directives

REPTC®

LOCAL®

REPTI

File Referencing Directives

Miscellaneous Directives

Symbol Control Directives

NAME or PROGRAM RADIX DEFINE
MODULE or LIBRARY CASEON SFRB
ENDMOD CASEOFF SFRW

Listing Control Directives

C-Style Preprocessor Directives®

Symbol Control Directives

LSTMAC (+/-) #define ASEG
LSTCOD (+/-) #undef RSEG
LSTPAG (+/-) #if, #else, #elif COMMON
LSTXREF (+/-) #ifdef, #ifndef STACK
#endif ORG
#include
#error

@ There is no direct support for IAR REPTC and REPTI directives in CCS. However, equivalent functionality can be achieved using

the CCS .macro directive:
; 1 AR Assenbl er Exanpl e

REPTI zero,"R4","R5", "R6"
MoV #0, zero
ENDR

; CCS Assenbl er Exanpl e

zero_regs .macro |ist
.var item
.1 oop

.break ($ismenber(item list) = 0)

MOV #0,item
. endl oop
.endm

Code that is generated by calling "zero_regs R4,R5,R6":

MOV #0, R4
MOV #0, RS
MOV #0, R6

@ In CCS, local labels are defined by using $n (with n=0...9) or with NAME?. Examples are $4, $7, or Test?.
® The use of C-style preprocessor directives is supported indirectly through the use of .cdecls. More information on the .cdecls
directive can be found in the MSP430 Assembly Language Tools User's Guide (literature number SLAU131).

36

Migration of Assembler Code from IAR 2.x, 3.x, 4.x to CCS

Copyright © 2005-2013, Texas Instruments Incorporated

SLAU157Y-May 2005—Revised May 2013
Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU131
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

Appendix D
I ’.{‘IE)S(’;A"EUMENTS SLAU157Y—-May 2005—Revised May 2013

FET-Specific Menus

This appendix describes the CCS menus that are specific to the FET.

Topic Page
0 R 1L L A 38
SLAU157Y-May 2005—Revised May 2013 FET-Specific Menus 37

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

Menus www.ti.com

D.1 Menus

D.1.1 Debug View: Run — Free Run

The debugger uses the device JTAG signals to debug the device. On some MSP430 devices, these JTAG
signals are shared with the device port pins. Normally, the debugger maintains the pins in JTAG mode so
that the device can be debugged. During this time, the port functionality of the shared pins is not available.

However, when Free Run (by opening a pulldown menu next to the Run icon on top of the Debug View) is
selected, the JTAG drivers are set to 3-state, and the device is released from JTAG control (TEST pin is
set to GND) when GO is activated. Any active on-chip breakpoints are retained, and the shared JTAG port
pins revert to their port functions.

At this time, the debugger has no access to the device and cannot determine if an active breakpoint (if
any) has been reached. The debugger must be manually commanded to stop the device, at which time
the state of the device is determined (that is, was a breakpoint reached?).

See FAQ Debugging #9.

D.1.2 Run — Connect Target
Regains control of the device when ticked.

D.1.3 Run — Advanced — Make Device Secure

Blows the JTAG fuse on the target device. After the fuse is blown, no further communication via JTAG
with the device is possible.

D.1.4 Project — Properties — Debug — MSP430 Properties — Clock Control

Disables the specified system clock while the debugger has control of the device (following a STOP or
breakpoint). All system clocks are enabled following a GO or a single step (STEP or STEP INTO). Can
only be changed when the debugger is inactive. See FAQ Debugging #12.

D.1.5 Window — Show View — Breakpoints

Opens the MSP430 Breakpoints View window. This window can be used to set basic and advanced
breakpoints. Advanced settings such as Conditional Triggers and Register Triggers can be selected
individually for each breakpoint by accessing the properties (right click on corresponding breakpoint). Pre-
defined breakpoints such as Break on Stack Overflow can be selected by opening the Breakpoint
pulldown menu, which is located next to the Breakpoint icon at the top of the window. Breakpoints may be
combined by dragging and dropping within the Breakpoint View window. A combined breakpoint is
triggered when all breakpoint conditions are met.

D.1.6 Window — Show View — Other... Debug — Trace Control

The Trace View enables the use of the state storage module. The state storage module is present only in
devices that contain the full version of the Enhanced Emulation Module (EEM) (see Table 2-1). After a
breakpoint is defined, the State Storage View displays the trace information as configured. Various trace
modes can be selected when clicking the Configuration Properties icon at the top right corner of the
window. Details on the EEM are available in the application report Advanced Debugging Using the
Enhanced Emulation Module (EEM) With CCS Version 4 (SLAA393).

D.1.7 Project — Properties — Debug — MSP430 Properties — Target Voltage

The target voltage of the MSP-FET430UIF can be adjusted between 1.8 V and 3.6 V. This voltage is
available on pin 2 of the 14-pin target connector to supply the target from the USB FET. If the target is
supplied externally, the external supply voltage should be connected to pin 4 of the target connector, so
the USB FET can set the level of the output signals accordingly. Can only be changed when the debugger
is inactive.

38 FET-Specific Menus SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAA393
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

Appendix E
I ’.{‘IE)S(’;A"EUMENTS SLAU157Y—-May 2005—Revised May 2013

Device Specific Menus

E.1 MSP430L092

E.1.1 Emulation Modes

The MSP430L092 can operate in two different modes: the L092 mode and C092 emulation mode. The
purpose of the C092 emulation mode is to mimic a C092 with up to 1920 bytes of code at its final
destination for mask generation by using an L092. The operation mode must be set in CCS before
launching the debugger. The selection happens in the project properties under Device Options at the

bottom, after selecting MSP430L092 as Device Variant as shown in Figure E-1. Figure E-2 shows how to
select the C092 mode.

SLAU157Y-May 2005—Revised May 2013

Device Specific Menus 39
Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

MSP430L092

13 TEXAS
INSTRUMENTS

www.ti.com

Load User Code
during Device startup
into RAM for execution

h 4

+'+ Properties for Blink

type filter text

> Resource
General
4 Build
4 MS5P430 Compiler
Processor Options
Optimization
Debug Options
Include Options
ULP Advisor
» Advanced Options
> MSP430 Linker
Debug

@ Show advanced settings

General

Configuration: [Debug [Active]

'] [Manage Configurations...

= Main

Output type: | Executable

Device
Family: MSP430
Variant: <select or type filter text> =

MSP430L092 -

Connection: | TI MSP430 USB1 [Default]

vI (applies to whole project)

 Advanced settings

1|

More...]

Device endianness: little
Compiler version: IT[\A.LU
Output format: l eabi (ELF)

7

Linker command file:

Runtime support library:

Ink_rmsp4301092.cmd

<automatic>

- Browse...
- Browse...

Device options

Log2

Emulation mode:

ook |

Cancel]

RAM

TIROM
(Like a boot
loader)

Save User Code il
external SPI memory

External SPI
Memory

'+ Properties for Blink

type filter text

Resource
General
Build
M5P420 Compiler
Processor Options
Optimization
Debug Options
Include Options
ULP Advisor
Advanced Options
MSP430 Linker
Debug

Figure E-1. MSP430L

Debug

Device | TI M5P430 USB1/MSP430

Generic Debugger Opti
MSP430 Properties

Disable breakpoints on a free run
Enable software breakpoints

Default breakpoint type
() Software

@ Hardware

Target Voltage (mV) 3000

Download Options
Erase Options
1@ Erase main memery only
() Erase main and information memaory
(7 Erase main, information and protected information memory
") Erase and download necessary segments only

() Replace written memory locations, retain unwritten memory la

092 Modes

Copy application to external SPI memory after program load I

—
Allow Read/Write/Erase access to B5L memory

40

Device Specific Menus

Copyright © 2005-2013, Texas Instruments Incorporated

SLAU157Y-May 2005—Revised May 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS

INSTRUMENTS

www.ti.com

MSP430L092

E.1.2 Loader Code

The Loader Code in the MSP430L092 is a ROM-code from Tl that provides a series of services. It enables
customers to build autonomous applications without needing to develop a ROM mask. Such an application
consists of an MSP430 device containing the loader (for example, MSP430L092) and an SPI memory
device (for example, '95512 or ‘25640). Those and similar devices are available from various
manufacturers. The majority of use cases for an application with a loader device and external SPI memory
for native 0.9-V supply voltage are late development, prototyping, and small series production. The
external code download may be set in the CCS Project Properties — Debug — MSP430 Properties —
Download Options — Copy application to external SPI memory after program load (see Figure E-1).

«'» Properties for Blink - I. (=l iE-J
type filter text General =T v
Resource
General
Build Configuration: [Debug [Active] '] ’ManageConfigurations...
M5P430 Compiler
N Processor Options
Application RAM Optimization m‘
Debug Options
Include Options Output type: | Executable
NONE Advanced Options
MSP430 Linker Device
Debug Eamily: MSP430
Memory swap:
The RAM is Variant: <select or type filter text> | [MSPBULUQE -
mapplad tl,o the Connection: | TI M5P430 USE1 [Default] = | (applies to whole project)
ROM location for
Romcode Aq et
developmenl w Advanced settings
propose
Device endianness: little
Compiler version: ['I'Iwi.l.ﬂ v] [More... l
Output format: [eabi (ELF) v]
Linker command file: Ink_msp430c092.cmd -
Runtime support library: <automatic> -
Device options
Emulation mode: | C092 VI
@j Show advanced settings [OK l l Cancel]

Figure E-2. MSP430L092 in C092 Emulation Mode

E.1.3 C092 Password Protection

The MSP430C092 is a customer-specific ROM device, which is protected by a password. To start a debug
session, the password must be provided to CCS. Open the MSP430C092.CCXML file in your project, click
Target Configurations in the Advanced Setup section, Advanced Target Configuration. The CPU
Properties become visible after MSP430 is selected. Figure E-3 shows how to provide a HEX password in
CCSv4 target configuration.

SLAU157Y-May 2005—Revised May 2013 Device Specific Menus 41

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

MSP430F5xx and MSP430F6xx BSL Support www.ti.com

«+ Properties for Blink - Llﬂlﬂ

type filker text General fe=10 - v
Resource
General —
Build Cenfiguration: IDEbUg [Active | 'l ’ManageConfigurations...

M5P430 Compiler
Processor Options

Optimizaticn B Main
Debug Options
Include Options Output type: | Executable
Advanced Options
L. MSP430 Linker Device
Application RAM Debug Eamily: MSP430
Variant: select or type filter text> =l | MSP430C092 vl 3
NONE Fannartinne | TTRAZDAN SR [Mafakl w | fannliar tnwkhale arnieet)
Target Configuration = =]
All Connections Cpu Properties
Customer ROM T, TIMSP430 USBL Import... MSP430 CPU
code 8 MSP430C092 Set the properties of the selected cpu.
(protected by Gt Msp430 EB
Password) o ypass
e initialization script -Browse...

Delete
Up I Password: (HEX format) UxABCDEFI

Down

Test Connection

Figure E-3. MSP430C092 Password Access

E.2 MSP430F5xx and MSP430F6xx BSL Support

Most of the MSP430F5xx and MSP430F6xx devices support a custom BSL that is protected by default. To
program the custom BSL, this protection must be disabled in CCS Project Properties — Debug —
MSP430 Properties — Download Options — Allow Read/Write/Erase access to BSL memory (see

Figure E-4).

42 Device Specific Menus SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com

MSP430F5xx and MSP430F6xx Password Protection

P

'« Properties for Blink

type filter text Debug
Resource
General Device | TI MSP430 USEL/MSP430
Build

M5P430 Compiler
Processor Options

Generic Debugger Opti

M35P430 Properties
Optimization
Debug Options
Include Options
Advanced Options

MSP430 Linker
Debug

Default breakpoint type
() Software

@ Hardware

m

Target Voltage (mV) 3000

Download Cptions
Erase Options
(@) Erase main memory only
(") Erase main and information memory
() Erase main, information and protected information memory
() Erase and download necessary segments only

() Replace written memery locations, retain unwritten memory locations

S TN
[¥] Allow Read/Write/Erase access to BSL memory

-

f~
kk?_,' Show advanced settings

4 m 2

[Restore Defaults] ’ Apply]

 {

[oK Cancel]

Figure E-4. Allow Access to BSL

E.3 MSP430F5xx and MSP430F6xx Password Protection

Selected MSP430F5xx and MSP430F6xx devices provide JTAG protection by a user password. When
debugging such an MSP430 derivatives, the hexadecimal JTAG password must be provided to start a
debug session. Open the MSP430Fxxxx.CCXML file in your project, click Target Configurations in the
Advanced Setup section, Advanced Target Configuration. The CPU Properties become visible after

MSP430 is selected (see Figure E-5).

SLAU157Y-May 2005—Revised May 2013
Submit Documentation Feedback

Device Specific Menus 43

Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

LPMx.5 CCS Debug Support www.ti.com

Target Configuration

|
o
ik

All Connections Cpu Properties

MSP430 CPU
= T, TIM5P430 USEL_D
= ﬁ M3P430FR5739_0 Set the properties of the selected cpu.
G msp4z0 Bl

|:| Bypass

initialization script
Browse, ..,

[5lave Processor

Password: (HEX Format) | pxapcD1234|

Basic | Advanced | Source

Figure E-5. MSP430 Password Access

E.4 LPMx.5 CCS Debug Support

LPMx.5 is a new low-power mode in which the entry and exit is handled differently compared to other low-
power modes. When used properly, LPMx.5 provides the lowest power consumption available on a
device. To achieve this, entry to LPMx.5 disables the LDO of the PMM module, removing the supply
voltage from the core and the JTAG module of the device. Because the supply voltage is removed from

the core, all register contents and SRAM contents are lost. Exit from LPMx.5 causes a BOR event, which
forces a complete reset of the system.

NOTE: See the corresponding MSP430 device family user's guide for additional LPMx.5 details.

E.4.1 Debugging With LPMx.5

To enable the LPMx.5 debug feature, the Halt on device wake up (required for debugging LPMx.5 mode)
checkbox must be enabled (see Figure E-6). To enable LPMx.5 debug, click Project Properties — Debug
— MSP430 Properties — Halt on device wakeup (required for debugging LPMx.5 mode).

44 Device Specific Menus SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS
INSTRUMENTS

www.ti.com LPMx.5 CCS Debug Support

<7 Properties for Blink B

type filter text Debug P
Resource
General Device | TI MSP430 USB1/MSP430
Build
M5P430 Compiler. Generic Debugger Opti =
Processor Options [MSP430 Properties
Optimization Target Voltage (mV) 3000 =

Debug Options
Include Options
Advanced Options
MSP430 Linker Erase Options
Debug _) Erase main memory only

Download Options

m

© Erase main and information memory —
_) Erase main, information and protected information memory
_ Erase and dewnload necessary segments only

_) Replace written memeory locations, retain unwritten memery locations

Copy application to external 5PI memory after program load

[] Allow Read/Write/Erase access to BSL memory

Low Power Mode Settings
["] Halt on device wake up (required for debugging LPMx.5 mode)

[Restore Defaults] ’ Apply]

':?:' Show advanced settings [oK l [Cancel]

Figure E-6. Enabling LPMx.5 Debug Support

If the LPMx.5 debug mode is enabled, a notification is displayed in the debugger console log every time
the target device enters and leaves LPMx.5 mode. Pressing the Halt or Reset button in CCS wakes the
target device from LPMx.5 and stops it at code start. All breakpoints that were active before LPMx.5 are
restored and reactivated automatically.

E.4.2 LPMx.5 Debug Limitations

When a target device is in LPMx.5 mode, it is not possible to set or remove advanced conditional or
software breakpoints. It is possible to set hardware breakpoints. In addition, only hardware breakpoints
that were set during LPMx.5 can be removed in the LPMx.5 mode. Attach to running target is not possible
in combination with LPMx.5 mode debugging, as this results in device reset.

NOTE: The option "RUN FREE" is currently not supported in CCS v.5.1.x and CCS v5.4.x when
LPMx.5 debugging is active.

See the corresponding MSP430 device family user's guide for additional LPMx.5 details.

SLAU157Y-May 2005—Revised May 2013 Device Specific Menus 45

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

Revision History

13 TEXAS
INSTRUMENTS

www.ti.com

Revision History

Version Comments
SLAU157Y Updated information throughout for Code Composer Studio IDE v5.4.
Removed support for MSP-FET430PIF emulator.
SLAU157X Added emulation features for MSP430TCH5E.
SLAU157W Added emulation features for MSP430F535x, MSP430F565x%, and MSP430F645x.
Updated information throughout for Code Composer Studio v5.3.
SLAU157V Added emulation features for MSP430SL5438A.
Updated LPMx.5 debugging support for MSP430F67xx in Table 2-1 .
Updated information throughout for Code Composer Studio v5.2.
SLAU157U Added emulation features for MSP430FR59xx and MSP430F665x.
Updated LPMx.5 debugging support in Table 2-1 and updated Section E.4.
SLAU157T Updated information throughout for Code Composer Studio v5.1.
Added emulation features for CC430F512x, CC430F514x, CC430F614x.
SLAU157S Added emulation features for MSP430F52xx, F533x, F643x, F67xX.
Added emulation features for MSP430FR57xx, LPMx.5, and general MSP430 Password Protection instructions in
SLAU157R ;
Appendix E.
SLAU157Q Added emulation features for MSP430F5310.
SLAU157P Added emulation features for MSP430AFE253, MSP430F532x, and MSP430F534x.
Added emulation features for MSP430BT5190, MSP430F530x, and MSP430F563x.
SLAU1570 Added BSL support for MSP430F5xx and MSP430F6xx in Appendix E and enhanced System Pre Init section in
Appendix A.
SLAU157N Added emulation features for MSP430L092 and MSP430C092 and memory information in Appendix E.
SLAU157M Added emulation features for MSP430G2xxx, MSP430F51x1, MSP430F51x2, MSP430F550x, MSP430F5510,
MSP430F551x, MSP430F552x, MSP430F663X.
SLAU157L Updated information throughout for Code Composer Studio v4.1.
Added emulation features for MSP430F44x1, MSP430F461x, MSP430F461x1.
SLAU157K Added emulation features for MSP430F54xxA, MSP430F55xx.
Updated and extended Table 2-1 with architecture information.
SLAU157J Updated information throughout for Code Composer Studio v4.
Removed information on hardware. It was moved into the MSP430 Hardware Tools User's Guide (SLAU278)
Added MSP-FET430U100A kit in Section 1.7 and MSP-TS430PZ100A target socket module schematic (Figure B-
19) and PCB (Figure B-20).
Added emulation features for CC430F513x, CC430F612x, CC430F613x, MSP430F41x2, MSP430F47X,
SLAU157I MSP430FG479, and MSP430F471xx in Table 2-1.
Updated MSP-TS430PN80 target socket module schematic (Figure B-15) with information on MSP430F47x and
MSP430FG47x.
Removed information throughout on MSP-FET430Pxx0 and MSP-FET430X110 kits.
SLAU157H Updated information throughout for Code Composer Essentials v3.1.
SLAU157G Added MSP-FET430U5x100 kit and MSP-TS430PZ5x100 target socket module schematic.
Added crystal information to Section 1.7.
SLAU157F Added overview of debug interfaces as Table 1-1.
Added eZ430-F2013, T2012, and eZ430-RF2500.
Updated information throughout for Code Composer Essentials v3.
Added MSP-TS430PW?28 target socket module, schematic (Figure B-5) and PCB (Figure B-6).
Updated MSP-FET430U28 kit content information (DW or PW package support) in Section 1.7.
SLAU157E Added emulation features for MSP430F21x2 to Table 2-1.
Updated MSP-TS430PW14 target socket module schematic (Figure B-1).
Updated MSP-TS430DA38 target socket module schematic (Figure B-7).
Added Section 1.12.
SLAU157D Updated Table 2-1.
Updated Appendix F.
Updated Appendix F.
SLAU157C Added emulation features for MSP430F22x2, MSP430F241x, MSP430F261x, MSP430FG42x0 and MSP430F43x
in Table 2-1.
46 Revision History SLAU157Y-May 2005—-Revised May 2013

Submit Documentation Feedback
Copyright © 2005-2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU278
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

13 TEXAS

INSTRUMENTS

www.ti.com

Revision History

Version

Comments

SLAU157B

Renamed MSP-FET430U40 to MSP-FET430U23x0.

Replaced MSP-FET430U40 schematic and PCB figures with renamed MSP-FET430U23x0 figures.

Added FAQ Hardware #2 in Section A.1.
Added FAQ Debugging #4 in Section A.3.

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

SLAU157Y-May 2005—Revised May 2013

Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

Revision History

47

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU157Y

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims
arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from
the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO
BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH
ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This
notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety
programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of Tl covering or relating to any machine, process, or
combination in which such TI products or services might be or are used. Tl currently deals with a variety of customers for products, and
therefore our arrangement with the user is not exclusive. Tl assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal
Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer
use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency
interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will
be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and
power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local
laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this
radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and
unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory
authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC — FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause
harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the
equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the interference at his own expense.

http://www.ti.com/corp/docs/csr/environment/ESHPolicyandPrinciples.shtml

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:

« Reorient or relocate the receiving antenna.

* Increase the separation between the equipment and receiver.

« Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

« Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC — INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this
device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain
approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should
be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum
permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain
greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme a la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider I'autorité de
I'utilisateur pour actionner I'équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est
autorisée aux deux conditions suivantes : (1) I'appareil ne doit pas produire de brouillage, et (2) I'utilisateur de I'appareil doit accepter tout
brouillage radioélectrique subi, méme si le brouillage est susceptible d'en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément a la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain
maximal (ou inférieur) approuvé pour I'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique a
I'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente
(p.i.r.e.) ne dépasse pas l'intensité nécessaire a I'établissement d'une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel
d’'usage et ayant un gain admissible maximal et I'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans
cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour I'exploitation de I'émetteur.

[Important Notice for Users of this Product in Japan]
This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and
Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of
Japan,

2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this
product, or

3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with
respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note
that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

[ZFEALCHE>TOE]

AREREFY NERIMEEESARAEZZFTTEY EE A,

EHBOZHERICBLTR., BRZETFOLD. ATOVWTNAOEBER > TOVEEKBEN HYERITOTIETEILEEL,

1. BREBTHRASRFIEFISCE IS FRISFIABAMRBE S RELIZS TEDSNEERREZOEBREBTCIEAVLELEL,

2. RBRROGHEMBEIFEAVEEL,

3. BWMEEBSARAENBRECERAVELEL,

BH, ARERE, RO TZERACHLE>TOREE, 2FEL. BRECBALZVRY, FE, BETEZLVEDELET,
LtRZEFEIEVEEE., ERZOFSEANEAEhD AEMEI HDE2IBEIEEV,

BETFHR A VAVIAXY KR4

REHFEXANECOTE24% 15

BEHE=HEIL

http://www.tij.co.jp

http://www.tij.co.jp
http://www.tij.co.jp

EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished
electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in
laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks
associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end
product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug
Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees,
affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable
regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates,
contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical)
between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to
minimize the risk of electrical shock hazard.

3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even
if the EVM should fail to perform as described or expected.

4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the
user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and
environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact
a Tl field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the
specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or
interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the
load specification, please contact a Tl field representative. During normal operation, some circuit components may have case temperatures
greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include
but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the
EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please
be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable
in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold T, its licensors and their representatives
harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in
connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such
as life support) where a failure of the Tl product would reasonably be expected to cause severe personal injury or death, such as devices
which are classified as FDA Class Il or similar classification, then you must specifically notify Tl of such intent and enter into a separate
Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

Tl warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by Tl for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of Tl components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, Tl components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class Il (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

Tl has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation —www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1 Get Started Now!
	1.1 Software Installation
	1.2 Flashing the LED
	1.3 Important MSP430™ Documents on the CD-ROM and Web

	2 Development Flow
	2.1 Using Code Composer Studio (CCS)
	2.1.1 Creating a Project From Scratch
	2.1.2 Project Settings
	2.1.3 Using an Existing CCE v2, CCE v3, CCE v3.1, and CCS v4.x Project
	2.1.4 Stack Management
	2.1.5 How to Generate Binary-Format Files (TI-TXT and INTEL-HEX)
	2.1.6 Overview of Example Programs and Projects

	2.2 Using the Integrated Debugger
	2.2.1 Breakpoint Types
	2.2.2 Using Breakpoints
	2.2.2.1 Breakpoints in CCS v5.4

	A Frequently Asked Questions
	A.1 Hardware
	A.2 Program Development (Assembler, C-Compiler, Linker, IDE)
	A.3 Debugging

	B Migration of C Code from IAR 2.x, 3.x, 4.x to CCS
	B.1 Interrupt Vector Definition
	B.2 Intrinsic Functions
	B.3 Data and Function Placement
	B.3.1 Data Placement at an Absolute Location
	B.3.2 Data Placement Into Named Segments
	B.3.3 Function Placement Into Named Segments

	B.4 C Calling Conventions
	B.5 Other Differences
	B.5.1 Initializing Static and Global Variables
	B.5.2 Custom Boot Routine
	B.5.3 Predefined Memory Segment Names
	B.5.4 Predefined Macro Names

	C Migration of Assembler Code from IAR 2.x, 3.x, 4.x to CCS
	C.1 Sharing C/C++ Header Files With Assembly Source
	C.2 Segment Control
	C.3 Translating A430 Assembler Directives to Asm430 Directives
	C.3.1 Introduction
	C.3.2 Character Strings
	C.3.3 Section Control Directives
	C.3.4 Constant Initialization Directives
	C.3.5 Listing Control Directives
	C.3.6 File Reference Directives
	C.3.7 Conditional Assembly Directives
	C.3.8 Symbol Control Directives
	C.3.9 Macro Directives
	C.3.10 Miscellaneous Directives
	C.3.11 Alphabetical Listing and Cross Reference of Asm430 Directives
	C.3.12 Unsupported A430 Directives (IAR)

	D FET-Specific Menus
	D.1 Menus
	D.1.1 Debug View: Run → Free Run
	D.1.2 Run → Connect Target
	D.1.3 Run → Advanced → Make Device Secure
	D.1.4 Project → Properties → Debug → MSP430 Properties → Clock Control
	D.1.5 Window → Show View → Breakpoints
	D.1.6 Window → Show View → Other... Debug → Trace Control
	D.1.7 Project → Properties → Debug → MSP430 Properties → Target Voltage

	E Device Specific Menus
	E.1 MSP430L092
	E.1.1 Emulation Modes
	E.1.2 Loader Code
	E.1.3 C092 Password Protection

	E.2 MSP430F5xx and MSP430F6xx BSL Support
	E.3 MSP430F5xx and MSP430F6xx Password Protection
	E.4 LPMx.5 CCS Debug Support
	E.4.1 Debugging With LPMx.5
	E.4.2 LPMx.5 Debug Limitations

	Revision History

